
Portable Programs for
Heterogeneous Computing:

A Hands-on Introduction

Tim Mattson
Intel Corp.

Alice Koniges
Berkeley Lab/NERSC

Simon McIntosh-Smith
University of Bristol

Agenda

Lectures Exercises

OpenCL Overview

--The OpenCL Python Environment

Exercises to Explore the Spec
--Logging on and Accounts at NERSC and
other Systems
--Vector addition
--Matix Multiplication

OpenMP Overview

--The OpenMP target directive

Exercises to Introduce OpenMP Accelerator
Directives
--Matrix Multiplication: sending loops to an
attached device
--The Pi program reductions and the target
directive

Student Exploration A variety of examples depending on
student expertise. We offer a choice of
beginning/intermediate/advanced
programs on a several architectures

OpenCL, OpenMP, Python, and Editors:
Reference Cards

To aid the students, we provide reference cards to help with the
language standards as well as editors to perform the exercises either
remotely on NERSC or on their own laptops. Here is a sample.

OpenCL C 1.2 Reference Card
OpenCL C++ 1.2 Reference Card

These cards will help you keep track
of the API as you do the exercises:

https://www.khronos.org/files/
opencl-1-2-quick-reference-card.pdf

The v1.2 spec is also very readable
and recommended to have on-hand:

https://www.khronos.org/registry/
cl/specs/opencl-1.2.pdf

Industry Standards for Programming
Heterogeneous Platforms

Open, royalty-free standard for portable, parallel
programming of heterogeneous parallel computing

CPUs, GPUs, and other processors

CPUs
Multiple cores driving
performance increases

GPUs
Increasingly general

purpose data-parallel
computing

Graphics
APIs and
Shading

Languages

Multi-
processor

programming –
e.g. OpenMP

Emerging
Intersection

Heterogeneous
Computing

Open
Standards

Outline/Schedule (part 1)
 OpenCL overview (45 minutes)

-  OpenCL history and motivation
-  General models in OpenCL
-  Hands-on: Accessing the servers we’ll be using in the course

•  The OpenCL python environment (45 minutes)
-  The OpenCL Host API
-  The python interface to the Host API
-  Hands-on: running a canned program (to test the environment)

•  Running a basic OpenCL program: part 1 (30 minutes)
-  Hands-on: Vector addition: the basic platform layer and writing your own host code.

•  Running a basic OpenCL program: part 2 (30 minutes)
-  Hands-on: Matrix multiplication: writing simple kernels

•  Optimizing Kernel code (60 minutes)
-  The OpenCL memory model
-  Hands-on: using local and private memory, the pi program
-  Kernel performance pitfalls
-  Hands-on: optimizing matrix multiplication

Outline/Schedule (part 2)
OpenMP overview (30 min)

-  OpenCL history and motivation
-  General models in OpenCL
-  Hands-on: Accessing the servers we’ll be using in the course

•  The OpenMP target directive (60 minutes)
-  Matrix multiplication: sending loops to an attached device
-  The Pi program: reductions and the target directive

•  Portable programming goals and basic concepts (60 minutes)
-  Hands-on: Student exploration: GPUs, CPUs, and the Intel® Xeon Phi™

processor
•  Key design patterns and basic lessons of portable parallel programming (30

Minutes)

Outline/Schedule (part 3)
•  Continued Exploration on the provided “zoo” of architectures

–  TBD, depending on hardware available when course starts

Here we give examples of the quality of slides.
based on our previous tutorials. Since the material is
continuously evolving, we have not prepared the
entire set yet for this particular tutorial. However quality
is of foremost importance to us. Please note that the
slides are clear, easy to read, and with minimal
background distractions. The slides are designed with
programmers in mind, so they help one to understand
and create good code.

The origins of OpenCL
AMD

ATI

NVIDIA

Intel

Apple

Merged, needed
commonality
across products

GPU vendor –
wants to steal
market share
from CPU

CPU vendor –
wants to steal
market share
from GPU

Was tired of recoding for
many core, GPUs.
Pushed vendors to
standardize.

Wrote a rough draft
straw man API

Khronos Compute
group formed

ARM
Nokia
IBM
Sony
Qualcomm
Imagination
TI

Third party names are the property of their owners.

+ many
more

OpenCL: From cell phone to
supercomputer

•  OpenCL Embedded profile for
mobile and embedded silicon
–  Relaxes some data type and

precision requirements
–  Avoids the need for a separate

“ES” specification
•  Khronos APIs provide

computing support for
imaging & graphics
–  Enabling advanced applications

in, e.g., Augmented Reality

•  OpenCL will enable parallel
computing in new markets
–  Mobile phones, cars, avionics

A camera phone with GPS
processes images to

recognize buildings and
landmarks and provides

relevant data from internet

OpenCL Platform Model

•  One Host and one or more OpenCL Devices
–  Each OpenCL Device is composed of one or more

Compute Units
•  Each Compute Unit is divided into one or more Processing Elements

•  Memory divided into host memory and device memory

Processing
Element

OpenCL Device

… …
…

…
… …

…
…

… …
…

…
… …

…
Host

Compute Unit

The BIG idea behind OpenCL
•  Replace loops with functions (a kernel) executing at each

point in a problem domain
–  E.g., process a 1024x1024 image with one kernel invocation per

pixel or 1024x1024=1,048,576 kernel executions

Traditional loops OpenCL
void !
mul(const int n,!
 const float *a,!
 const float *b,!
 float *c)!
{!
 int i;!
 for (i = 0; i < n; i++)!
 c[i] = a[i] * b[i];!
}!

__kernel void!
mul(__global const float *a,!
 __global const float *b,!
 __global float *c)!
{!
 int id = get_global_id(0);!
 c[id] = a[id] * b[id];!
}!
// execute over n work-items!

An N-dimensional domain of work-items
•  Global Dimensions:

–  1024x1024 (whole problem space)
•  Local Dimensions:

–  128x128 (work-group, executes together)

•  Choose the dimensions (1, 2, or 3) that are
“best” for your algorithm

1024

10
24

Synchronization between
work-items possible only

within work-groups:
barriers and memory fences

Cannot synchronize
between work-groups

within a kernel

OpenCL Memory model
•  Private Memory

–  Per work-item

•  Local Memory
–  Shared within a

 work-group

•  Global Memory
Constant Memory
–  Visible to all

 work-groups

•  Host memory
–  On the CPU

Memory management is explicit:
You are responsible for moving data from

 host → global → local and back

Context and Command-Queues
•  Context:

–  The environment within which kernels
execute and in which synchronization
and memory management is defined.

•  The context includes:
–  One or more devices
–  Device memory
–  One or more command-queues

•  All commands for a device (kernel
execution, synchronization, and
memory operations) are submitted
through a command-queue.

•  Each command-queue points to a
single device within a context.

Queue

Context

Device

Device Memory

Execution model (kernels)
•  OpenCL execution model … define a problem

domain and execute an instance of a kernel for
each point in the domain

__kernel void times_two(!
 __global float* input,!
 __global float* output)!
{!
 int i = get_global_id(0);!
 output[i] = 2.0f * input[i];!
}!

get_global_id(0)!
10

Input

Output

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

__kernel void !
horizontal_reflect(read_only image2d_t src,!
 write_only image2d_t dst) !
{!
 int x = get_global_id(0); // x-coord !
 int y = get_global_id(1); // y-coord !
 int width = get_image_width(src); !
 float4 src_val = read_imagef(src, sampler, !
 (int2)(width-1-x, y)); !
 write_imagef(dst, (int2)(x, y), src_val);!
}!

Building Program Objects
•  The program object encapsulates:

–  A context
–  The program source or binary, and
–  List of target devices and build options

•  The build process to create a
program object:

OpenCL uses runtime
compilation … because
in general you don’t
know the details of the
target device when you
ship the program

Compile for
GPU

Compile for
CPU

GPU
code

CPU
code

cl::Program program(context, KernelSource, true);!

Example: vector addition

•  The “hello world” program of data parallel
programming is a program to add two vectors

C[i] = A[i] + B[i] for i=0 to N-1!

•  For the OpenCL solution, there are two parts
– Kernel code
– Host code

Vector Addition - Kernel

__kernel void vadd(!
! ! ! __global const float *a,!
! ! ! __global const float *b,!
! ! ! __global float *c)!
 {!
 int gid = get_global_id(0);!
 c[gid] = a[gid] + b[gid];!
 }!
!

Exercise 1: Running the Vector Add kernel
•  Goal:

–  To inspect and verify that you can run an OpenCL kernel

•  Procedure:
–  Take the Vadd program we provide you. It will run a simple kernel to add

two vectors together.
–  Look at the host code and identify the API calls in the host code. Compare

them against the API descriptions on the OpenCL C++ reference card.

•  Expected output:
–  A message verifying that the program completed successfully

1. ssh -X train#@carver.nersc.gov (and enter supplied password)
2. ssh -X dirac# (and enter supplied password)
3. cp -r /projects/projectdirs/training/SC14/OpenCL_exercises/ .
4. module unload pgi openmpi cuda
5. module load gcc-sl6
6. module load openmpi-gcc-sl6
7. module load cuda
8. cd OpenCL_exercises
9. cp Make_def_files/dirac_linux_general.def make.def
8. cd /Exercises/Exercise01
9. make; ./vadd (etc)
More: https://www.nersc.gov/users/computational-systems/testbeds/dirac/opencl-
tutorial-on-dirac/

